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Abstract. We study the problem of directed compact site animals in two dimensions using 
exact enumeration methods. The numerical analysis of our animal number series strongly 
indicates that the critical exponent 0 equals zero. We also estimate the non-universal 
growth parameter A = 2.661 85 f 0.OOO 05. 

The problem of directed animals has received considerable attention recently (Redner 
and Yang 1982, Dhar et a1 1982, Nadal et a1 1982, Day and Lubensky 1982, Redner 
and Coniglio 1982). This is a modification of the usual isotropic animal problem in 
which directionality plays a fundamental role. One can define a directed animal as a 
set of lattice sites, such that each site belonging to the set is reachable from a given 
fixed site (the origin) by directed paths only. The statistical properties of directed 
animals have been well studied by field theoretic methods (Day and Lubensky 1982) 
and by direct enumeration (Redner and Yang 1982, Dhar et a1 1982). 

In this paper, we enumerate directed compact site animals in two dimensions and 
obtain estimates for the critical exponent 8 and inverse critical fugacity or growth 
parameter A by analysing our enumeration data. 

A directed compact site animal can be defined as a connected cluster of sites having 
no holes, i.e. all the sites enclosed by the directed animal are occupied. A simply 
directed animal, however, contains holes in between. 

We write the animal generating function as the sum of the weights of all animals, 
the weight of an animal of size n being x n :  

OD 

F ( x ) =  Fnxn 
n=O 

where F,, is the number of site animals of size n. For large n, Fn is expected to have 
the asymptotic form 

Fn - A " f i e .  (2) 

Here, h is a lattice dependent growth parameter and 8 is a critical exponent. 
We enumerate directed compact lattice animals defined on a square lattice by 

writing the recursion relations between animals with different source sets. These 
recursions are used to generate a series expansion on a computer. A closed form 
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expression for the recursion relations used in the cluster enumeration can be written 
as (see the appendix) 

We have generated animals up to size 19 on a Cyber 170-730 computer (see the appendix). 
We now consider the analysis of the animal number series to obtain estimates for 

6 and A. We form the estimates 6, = ln(F~/F ,_ ,F ,+ , ) / ln ( l -  l / n 2 )  by using equation 
(2) and three successive terms of the series expansion. For n + 00, one can show that 
6, + 6. Our results strongly indicate that 6, + 0 as the number of sites n become large. 
Thus we find that the critical exponent 6 = 0 for two-dimensional directed compact 
animals. The growth parameter A is obtained as the n +00 limit of A,, where A, = 
F,/ F,-, is the ratio of successive generating function coefficients. Following Gaunt 
et al (1976), we obtain estimates for A based on linearly extrapolating A, against 1/ n, 
i.e. nA, - ( n  - l ) A , , - , .  Our results for 6, and A, are displayed in table 1. 

We have also used an alternative method following Zinn-Justin (1981) to estimate 
6 and A. This method involves calculation of On and A, from three second successive 
terms of the series expansion. We calculate 8, by using the relation: 

-2(a, + an-2) 
(a, - a,-*)2 

en = 

where a, is defined as 

and 8, corresponds to 1 - Y ,  in Zinn-Justin's notation. The value of A, is estimated by 

Table 1. Estimates for 0, calculated from three successive terms of the series expansion 
and A n  as the ratios of successive generating function coefficients. Extrapolated values of 
A, are also shown. 

Extrapolated values 
n 0. A n  of A,? 

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

0.078 50 
0.018 01 
0.053 61 
0.021 56 
0.017 55 
0.007 93 
0.006 97 
0.004 30 
0.002 36 
0.001 74 
0.000 87 
0.000 64 
0.000 36 
0.000 22 

2.647 058 
2.655 555 2.698 04 
2.656 903 2.664 99 
2.659 842 2.680 41 
2.660 746 2.667 97 
2.661 326 2.666 54 
2.661 538 2.663 65 
2.661 692 2.663 38 
2.661 772 2.662 73 
2.661 809 2.662 29 
2.661 833 2.552 16 
2.661 843 2.661 99 
2.661 850 2.661 96 
2.661 853 2.661 90 
2.661 855 2.661 89 

t Best extrapolated value A = 2.6619 f 0.000 05. 
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We find strong evidence in support of our earlier observation that the exponent 8 = 0. 
The value of A is estimated to be 2.661 85 * 0.000 05 which is not much different from 
our earlier result. This approach minimises any even-odd effect and the results shown 
in table 2 seem to be slightly better behaved. 

In summary, we have studied some properties of directed compact animals in two 
dimensions. We observe that the exponent e = 0, which is different from 8 = 3 for 
directed animals and 0 = 1 for undirected animals in two dimensions. 

Table 2. Estimates for 6. and A" calculated from three second successive terms of the 
series expansion. 

n 

9 
10 
1 1  
12 
13 
14 
15 
16 
17 
18 
19 

6" 

0.017 537 
0.010 098 
0.014 159 
0.004 220 
0.001 731 
0.001 051 
0.000 708 
0.000 351 
0.000 171 
0.000 097 
0.000 051 

A,? 

2.664 62 
2.663 89 
2.665 58 
2.662 88 
2.662 22 
2.662 09 
2.662 03 
2.661 94 
2.661 89 
2.661 88 
2.661 86 

t Best extrapolated value A = 2.661 85 *O.OOO 05. 
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Appendix 

We write the animal generating function as 

F ( x )  = F,x" 
a2 

n = O  

where F, is the number of site animals of size n. The generating function exhibits 
power-law singularity of the form 

F ( x ) -  Ix, - X I ' - '  
as x + x,. The exponent 0 is a critical exponent. We also define the exponent e directly 
in terms of cluster size n as 

F, - n-'A" (for large n ) .  
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From equations ( A l )  and (A3) it is clear that the singular behaviour of the generating 
function is recovered in the limit n + m .  This implies that the critical exponent 0 
characterising the singularity of the generating function is obtained only in the large 
n limit. 

To understand the formation of recursion relations, let us consider a 3 x 0;) strip, 
i.e. a lattice of width 3 and length CO. It is easy to write down relations between the 
animals with different source sets. A source set can be defined as a set of points such 
that each site in the animal is reachable from at least one of the points in the source 
using directed paths. A source set is a subset of the animal. 

We write down the recursion relations between animals with source sites at column 
0 and at column 1 of a 3 xco strip. One such relation between the animals with all 
the three sites occupied at column 0 and one or more sites occupied at column 1 is 
written as 

F!," = FLY3 + F!,'_q + F!,E2 + F:!, + F!,'?, + e?, + ell. (A4) 
Superscripts in equation (A4) represent a given set of occupied sites in the source. 
The number of occupied sites and their position in column 1 generates different 
configurations and each site in these configurations is connected to at least one site in 
column 0. Using equation ( A l )  in (A4) we obtain 
F"'(x)  = x 3 F 1 ' ' ( x )  + X ' ( F " ~ ( X ) +  F"'(x)+  F 0 " ( x ) )  

+ x ( F " ( x ) +  FO'O(x)+F"(x))+ 1 .  (A51 
The choice of periodic boundary conditions further simplifies equation (A4) and we 
obtain 

F 1 l l ( X )  = X3F111(X) + 3X*F"O(X) + 3xF'OO(x) + 1 .  ('46) 
Similar recursions can be written for F"O(x) and F'"'(x). In this way one can write 
down recursion relations for non-compact animals on a lattice of any finite width. 

In the problem of directed compact animals we consider the cluster extending from 
the lower left-hand comer of a square lattice. Therefore we shall be concerned with 
those source sets where all the source sites lie on the line x + y = constant; ( x ,  y )  are 
the coordinates of the source sites. 

Since all the sites enclosed by a compact animal are occupied, we can easily write 
down the recursion relations as 

F 1 ( x )  = 1 +2XF'(X)+X2F'1(X) 

P y x )  = 1 + 3 x F ' ( x )  + 2xZF"(x) + X 3 F " ' ( x )  

F 1 I 1 ( X )  = 1 + 4 x F 1 ( x )  + 3 x 2 F " ( x )  +2X3F11'(X)+X4F1111(X) ('47) 
and so on. 

The set of these coupled recursions can be written in a closed form as 

Y + F ( x ,  X Y )  F ( x ,  y )  = - x F ' ( x ) + -  
(1 - Y )  Y ( l  - Y Y  

where 
W 

F ( x , y ) =  c Y L F L ( 4  
L= 1 

F ( x ,  x y )  = f ( x y ) L F L ( x ) .  
L= 1 

('49) 



Two-dimensional directed compact animals 3265 

We have obtained equation (A8) by multiplying the first, second,. . . , recursions of 
the set (A6) by y, y 2 ,  . . . , respectively, and summing over y. Comparison of coefficients 
of a Taylor series expansion of F ( x ,  y )  around y = 0 with those of F ( x ,  y) in equation 
(A9) yields 

F " ( x )  = 1/2! a F 2 ( x 9 y ) l Y = o  ay2 

and so on. 
We can generate all the recursion relations of the set (A7) from (A10). Using these 

recursion relations we have generated a series expansion for directed compact animals 
in two dimensions. The series expansion is 

F ' ( x )  = 1 + 2 x + 5 x 2 +  1 3 ~ ~ + 3 4 ~ ~ + 9 0 ~ ~ + 2 3 9 ~ ~ + 6 3 5 ~ ~ +  1689x8+4494x9 

+11 96Ox1O+31 8 3 2 x " + 8 4 7 2 7 ~ ' ~ + 2 2 5  5 2 4 ~ ' ~ + 6 0 0 3 0 2 x ' ~  

+ 1597 904xI5+4253 371xI6+ 1 1  321 8 3 8 ~ ' ~  

+30 137 0 7 9 ~ ' ~ + 8 0 2 2 0  5 5 7 ~ ' ~ + O ( x ~ O ) .  

(The series expansion is obtained by substituting, say, F"'(x) from the third equation 
of (A7) into the second equation and continuing the procedure till we get an expansion 
for F ' ( X ) . )  F ' ( x )  is the same as F ( x )  defined earlier. The superscript 1 denotes that 
the animals are generated from a single seed. 
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